Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
J Dairy Sci ; 106(9): 6567-6576, 2023 Sep.
Article En | MEDLINE | ID: mdl-37532623

Rumen-protected Lys (RPL) fed to Holstein cows prepartum resulted in a greater intake and improved health of their calves during the first 6 wk of life. However, whether increased supply of Lys in late gestation can influence placental tissue and, if so, which pathways are affected remain to be investigated. Therefore, we hypothesize that feeding RPL during late gestation could modulate placental metabolism, allowing for improved passage of nutrients to the fetus and thus influencing the offspring development. Therefore, we aimed to determine the effects of feeding RPL (AjiPro-L Generation 3, Ajinomoto Health and Nutrition North America) prepartum (0.54% DM of TMR) on mRNA gene expression profiles of placental samples of Holstein cows. Seventy multiparous Holstein cows were randomly assigned to 1 of 2 dietary treatments, consisting of TMR top-dressed with RPL (PRE-L) or without (control, CON), fed from 27 ± 5 d prepartum until calving. After natural delivery (6.87 ± 3.32 h), placentas were rinsed with physiological saline (0.9% sodium chloride solution) to clean any dirtiness from the environment and weighed. Then, 3 placentomes were collected, one from each placental region (cranial, central, and caudal), combined and flash-frozen in liquid nitrogen to evaluate the expression of transcripts and proteins related to protein metabolism and inflammation. Placental weights did not differ from cows in PRE-L (15.5 ± 4.03 kg) and cows in CON (14.5 ± 4.03 kg). Feeding RPL prepartum downregulated the expression of NOS3 (nitric oxide synthase 3), involved in vasodilation processes, and SOD1, which encodes the enzyme superoxide dismutase, involved in oxidative stress processes. Additionally, feeding RPL prepartum upregulated the expression of transcripts involved in energy metabolism (SLC2A3, glucose transporter 3; and PCK1, phosphoenolpyruvate carboxykinase 1), placental metabolism and cell proliferation (FGF2, fibroblast growth factor 2; FGF2R, fibroblast growth factor 2 receptor; and PGF, placental growth factor), Met metabolism (MAT2A, methionine adenosyltransferase 2-α), and tended to upregulate IGF2R (insulin-like growth factor 2 receptor). Placental FGF2 and LRP1 (low-density lipoprotein receptor-related protein 1) protein abundance were greater for cows that received RPL prepartum than cows in CON. In conclusion, feeding RPL to prepartum dairy cows altered uteroplacental expression of genes and proteins involved in cell proliferation, and in metabolism and transport of glucose. Such changes are illustrated by increased expression of SLC2A3 and PCK1 and increased protein abundance of FGF2 and LRP1 in uteroplacental tissue of cows consuming RPL.


Dietary Supplements , Lysine , Female , Pregnancy , Animals , Cattle , Lysine/metabolism , Fibroblast Growth Factor 2/metabolism , Fibroblast Growth Factor 2/pharmacology , Lactation , Rumen/metabolism , Milk/metabolism , Placenta , Placenta Growth Factor/metabolism , Placenta Growth Factor/pharmacology , Diet/veterinary , Postpartum Period
2.
J Dairy Sci ; 106(10): 7240-7265, 2023 Oct.
Article En | MEDLINE | ID: mdl-37532626

Dry matter intake (DMI, kg/d) is closely related to the magnitude of negative energy and protein balance during the transition period, and the metabolic adaptations to support lactation in dairy cows. Thus, DMI might affect the development of cytological endometritis in the early postpartum period. Difficulty to adapt to these metabolic changes is related to impaired immune function and increased occurrence of reproductive disorders. We aimed to examine the association of pre- and postpartum DMI, body weight (BW), body condition score, milk yield and milk composition, and days to first ovulation with cytological endometritis at 15 (CYT15) and 30 DIM (CYT30). A second objective was to understand the association of vaginal discharge with CYT15 and CYT30 and performance. We conducted a pooled statistical analysis of 5 studies, including data from 280 multiparous Holstein cows. Based on the cutoffs for the percentage of uterine polymorphonuclear cells (PMN), determined by taking the median value of the data set for 15 and 30 DIM, cows were categorized as follows: LOW15 (PMN % at 15 DIM ≤24%; n = 125), HIGH15 (PMN % at 15 DIM >24%; n = 125), LOW30 (PMN % at 30DIM ≤7%; n = 141); and HIGH30 (PMN % at 30DIM >7%; n = 139). Cows in HIGH15 consumed an average of 1.97 ± 0.5 kg/d less DM than cows in LOW15 during prepartum, and 3.01 ± 0.5 kg/d less DM during postpartum. Dry matter intake (as a percentage of BW) was higher for cows in LOW15 during pre- and postpartum than for cows in HIGH15. Moreover, cows in HIGH15 tended to have lower milk yield than cows in LOW15 from the third until the fifth week postpartum. Although DMI was not associated with CYT30, DMI (as a percentage of BW) was lower for cows in LOW30 pre- and postpartum than for cows in HIGH30. There was no association between CYT30 and milk yield. Cows in LOW15 had greater days to first ovulation than cows in HIGH15, while cows in LOW30 also had greater days to first ovulation than cows in HIGH30. Simple regression analyses demonstrated linear associations of increased DMI, particularly postpartum, with decreased uterine PMN percentage and lower vaginal discharge score. Additionally, increased units of vaginal discharge score and increased percentage units of uterine PMN were linearly associated with decreased milk yield. Corroborating with the notion of the ovarian function being associated with uterine inflammatory status, cows in HIGH15 and HIGH30 ovulated on average 3 d before than cows in LOW15 and LOW30, respectively. Cytological endometritis at 15 DIM was associated with lower DMI from 4 wk before calving until 4 wk postpartum and was associated with lower milk yield. The association of vaginal discharge with cytological endometritis was variable and dependent on the day of evaluation.


Cattle Diseases , Endometritis , Vaginal Discharge , Female , Cattle , Animals , Milk/metabolism , Endometritis/veterinary , Endometritis/metabolism , Postpartum Period , Lactation , Ovulation , Body Weight , Vaginal Discharge/metabolism , Vaginal Discharge/veterinary , Diet/veterinary , Cattle Diseases/metabolism
3.
J Dairy Sci ; 106(4): 2989-3007, 2023 Apr.
Article En | MEDLINE | ID: mdl-36797190

This experiment was conducted to determine the effects of feeding rumen-protected lysine (RPL; AjiPro-L Generation 3, Ajinomoto Health and Nutrition North America Inc.) from -26 ± 4.6 d prepartum (0.54% RPL of dietary dry matter intake) to 28 d postpartum (0.39% RPL of dietary dry matter intake) on immunometabolic status and liver composition in dairy cows. Seventy-five multiparous Holstein cows, blocked by parity, previous 305-d mature-equivalent milk production, expected calving date, and body condition score during the far-off dry period were assigned to 1 of 4 dietary treatments in a randomized, complete block design with a 2 × 2 factorial arrangement of treatments. Treatments prepartum consisted of total mixed ration top dressed with RPL (PRE-L) or without RPL (PRE-C), and postpartum treatments consisted of total mixed ration top dressed PRE-L prepartum and postpartum, PRE-L prepartum and PRE-C postpartum, PRE-C prepartum and PRE-L postpartum, and PRE-C prepartum and postpartum in 300 g of molasses. Blood samples were taken on -7 ± 0.5, 0 ± 0.5, 7 ± 0.9, 14 ± 0.9, and 28 ± 0.5 d relative to calving. Whole blood samples were taken on -14 ± 0.5, -7 ± 0.5, 7 ± 0.9, and 14 ± 0.9 d relative to calving for oxidative burst and phagocytic capacity of monocytes and neutrophils. Liver samples were collected via a biopsy on -12 ± 4.95 and 13 ± 2.62 d relative to calving and analyzed for liver composition (triacylglyceride and carnitine concentrations), mRNA expression of hepatic genes, and protein abundance. Protein abundance was calculated by normalizing intensity bands for a specific protein with glyceraldehyde-3-phosphate dehydrogenase. Concentrations of haptoglobin and glutathione peroxidase activity in plasma were lower at d 0 for cows in PRE-L (102 µg/mL and 339 nmol/min per mL, respectively) compared with cows in PRE-C (165 µg/mL and 405 nmol/min per mL, respectively). Oxidative burst capacity in monocytes tended to be greater on d 7 postpartum for cows in PRE-L (65.6%) than cows in PRE-C (57.5%). Additionally, feeding RPL altered the mRNA expression in liver tissue prepartum [decreased INSR (insulin receptor), CPT1A (carnitine palmitoyltransferase 1A), and IL1B (interleukin 1 ß)] and postpartum [increased IL8 (interleukin 8), EHMT2 (euchromatic histone lysine methyltransferase 2), TSPO (translocator protein), and SLC3A2 (solute carrier family 3 member 2); and decreased SLC7A1 (solute carrier family 7 member 1), SOD1 (superoxide dismutase 1), and SAA3 (serum amyloid A 3)] compared with cows not consuming RPL]. Additionally, cows in the PRE-C prepartum and PRE-L postpartum treatment tended to have greater protein abundance of mTOR postpartum compared with the PRE-C prepartum and postpartum treatment. Protein abundance of SLC7A7 (solute carrier family 7 member 7) pre- and postpartum tended to be greater and BBOX1 (gamma-butyrobetaine dioxygenase 1) tended to be less when RPL was consumed prepartum. In conclusion, cows that consumed RPL during the transition period had molecular changes related to liver composition, enhanced liver function indicated by greater total protein and albumin concentrations in plasma, and improved immune status indicated by decreased haptoglobin, glutathione peroxidase activity, and immune related mRNA expression.


Lactation , Lysine , Animals , Cattle , Female , Pregnancy , Biomarkers/metabolism , Diet/veterinary , Glutathione Peroxidase/metabolism , Haptoglobins/metabolism , Lactation/physiology , Lysine/metabolism , Milk/metabolism , Postpartum Period/metabolism , RNA, Messenger/metabolism , Rumen/metabolism
4.
J Dairy Sci ; 105(9): 7805-7819, 2022 Sep.
Article En | MEDLINE | ID: mdl-35940923

Feeding rumen-protected methionine as an indispensable amino acid source has been shown to improve reproductive performance in dairy cows, but the effect of feeding rumen-protected lysine (RPL) during the peripartum period on reproductive performance is not well explored. Therefore, we aimed to determine the effects of feeding RPL (AjiPro-L Generation 3, Ajinomoto Heartland Inc.) prepartum, postpartum, or both on follicular dynamics, uterine health, and mRNA gene expression of the endometrium. Seventy-five multiparous Holstein cows were assigned to 1 of 2 dietary treatments with or without RPL in a randomized, complete block design. A 2 × 2 factorial arrangement of treatments was used. Prepartum (-28 d to calving), animals were fed a diet (68% of dietary DM from forage) with RPL [PRE-L; 0.54% RPL of dietary dry matter intake] or without RPL (PRE-C). After calving, half of the cows from each prepartum treatment group were assigned to a diet (56% forage) with RPL (PRE-L POST-L; PRE-C POST-L; 0.40% RPL of dietary dry matter intake) or without RPL (PRE-C POST-C; PRE-L POST-C) until 28 d in milk (DIM). Vaginal discharge was detected with a Metricheck device (Simcro) to detect metritis, and at 28 DIM polymorphonuclear leukocytes were evaluated as a percentage of the epithelial cells using a cytology brush (Andwin Scientific) and an endometrial tissue biopsy was collected for mRNA expression and histology. The first postpartum follicular growth cycle was monitored at 7, 10, 11, 13, 15, 17, 19, 21, 23, 25, 27, and 28 DIM via transrectal ultrasonography. Time to first ovulation did not differ between treatments and averaged 18 ± 1.6 DIM. Follicular diameter at first ovulation was not affected by the treatments, but the growth rate of dominant follicle before first ovulation tended to be lower for cows in POST-L in comparison with cows in POST-C. Prevalence of fetid vaginal discharge and metritis did not differ between treatments. Cows in PRE-L POST-L had lower polymorphonuclear leukocytes percentage at 15 and 28 DIM than cows in PRE-L POST-C, PRE-C POST-L, and PRE-C POST-C. Feeding RPL prepartum downregulates the expression of TLR4, SLC7A6, EHMT2, and tends to downregulate the expression of PTGES3 in uterine tissues at 28 DIM. Additionally, it upregulates the expression of APOL3 and NFKB1, and tends to upregulate the expression of AHCY and MAT2A. In conclusion, feeding RPL pre- and postpartum improved indicators of uterine immune status, but did not change days to first ovulation postpartum.


Cattle Diseases , Vaginal Discharge , Animals , Cattle , Cattle Diseases/metabolism , Diet/veterinary , Female , Lactation/physiology , Lysine , Milk/chemistry , Postpartum Period , RNA, Messenger/metabolism , Rumen/metabolism , Vaginal Discharge/veterinary
5.
J Dairy Sci ; 105(3): 2256-2274, 2022 Mar.
Article En | MEDLINE | ID: mdl-34955262

Providing adequate concentrations of AA in the prepartum diet is pivotal for the cow's health and performance. However, less is known about the potential in utero effects of particular AA on early-life performance of calves. This experiment was conducted to determine the effects on dairy calves when their dams were fed rumen-protected lysine (RPL; AjiPro-L Generation 3, Ajinomoto Heartland Inc.; 0.54% dry matter of total mixed ration as top dress) from 26 ± 4.6 d (mean ± standard deviation) before calving until calving. Seventy-eight male (M) and female (F) Holstein calves were assigned to 2 treatments based on their dams' prepartum treatment, RPL supplementation (PRE-L) or without RPL (CON). At the time of birth (0.5-2 h after calving), before colostrum was fed, blood samples were collected. An initial body weight was obtained at 1 to 3 h after birth. Calves were fed 470 g of colostrum replacer (Land O'Lakes Bovine IgG Colostrum Replacer, Land O'Lakes, Inc.) diluted in 3.8 L of water. Calves were provided water ad libitum and fed milk replacer (Advance Excelerate, Milk Specialties Global Animal Nutrition; 28.5% crude protein, 15% fat) at 0600 h and 1700 h until 42 d of age. Calves were measured weekly, at weaning (d 42), and at the end of the experimental period (d 56). Plasma concentrations of AA were measured on d 0, 7, and 14 d using ultra-performance liquid chromatography-mass spectrometry (Waters) with a derivatization method (AccQ-Tag Derivatization). Final body weight was greater for M (87 ± 11 kg) than F (79 ± 7 kg). Calves in PRE-L tended to have greater dry matter (814 ± 3 g/d) and crude protein (234 ± 6 g/d) intakes than those in CON (793 ± 9 g/d and 228 ± 11 g/d, respectively). Calves in PRE-L had greater average daily gain (0.96 ± 0.04 kg/d) than calves in CON (0.85 ± 0.03 kg/d) during wk 6 to 8. Calves in PRE-L tended to be medicated fewer days than CON (4.7 ± 1.2 d vs. 6.2 ± 3.4 d, respectively). Calves in PRE-L-M and CON-F (2,916 ± 112 µM and 2,848 ± 112 µM, respectively) had greater total AA concentration in plasma than calves in PRE-L-F and CON-M (2,684 ± 112 µM and 2,582 ± 112 µM, respectively). Calves in PRE-L-F and CON-M (4.09 ± 0.11% and 4.16 ± 0.11%, respectively) had greater concentration of Lys as a percentage of total AA compared with calves in CON-F and PRE-L-M (3.91 ± 0.11% and 3.90 ± 0.11%, respectively). Calves in PRE-L tended to have greater percentage of phagocytic neutrophils (39.6 ± 1.59%) than calves in CON (35.9 ± 1.59%). In conclusion, increasing the metabolizable lysine provided to prepartum dairy cows had modest effect over offspring performance, with the major result being a greater average daily gain for calves in PRE-L during the preweaning phase (wk 6-8).


Lysine , Rumen , Animal Feed/analysis , Animals , Body Weight , Cattle , Colostrum , Diet/veterinary , Female , Lysine/metabolism , Male , Milk/metabolism , Pregnancy , Rumen/metabolism , Weaning
6.
Theriogenology ; 173: 102-111, 2021 Oct 01.
Article En | MEDLINE | ID: mdl-34365138

The objective of the present study was to evaluate the effect of feeding rumen-protected methionine (RPM) during the peripartal period and early lactation on mRNA gene expression profiles of uterine cytological smear and endometrial samples of Holstein cows (n = 20). Treatments consisted of a supplementation with RPM [MET; n = 11; RPM at a rate of 0.08 % of DM: Lys:Met = 2.8:1, (Smartamine® M Adisseo, Alpharetta, GA, USA)] and no supplementation (CON; n = 9; Lys:Met = 3.5:1). Uterine cytology smears and endometrial samples were collected at 15, 30, and 73 days in milk (DIM) and analyzed for expression of genes related with metabolism, inflammation, and methionine metabolism. Regarding the cytological smear samples, RPM supplementation tended to increase mRNA expression of methionine adenosyltransferase 1 alpha (MAT1A) and increased the mRNA expression of fibroblast growth factor 7 (FGF7), with an effect of time for the latter. On the other hand, RPM decreased mRNA expression for glucose transporter 4 (GLUT4), interleukin 1 beta (IL-1ß), interleukin 6 (IL-6), interleukin 8 (IL-8), prostaglandin E synthase 3 (PTGES3), translocator protein 18 kDa (TSPO), mucin 1 (MUC1) and superoxide dismutase (SOD1) in cytological smear samples. There was an effect of time for all variables except MAT1A, with decreasing expression over time. There was a TRT × TIME interaction for GLUT4 mRNA expression, with higher GLUT4 mRNA expression for cows fed CON than for cows fed RPM at time 15 and a tendency to higher expression for cows fed CON on time 30 when compared with cows fed RPM. For uterine tissue samples, feeding RPM increased the mRNA expression of lecithin-cholesterol acyltransferase (LCAT), S-adenosyl-l-homocysteine hydrolase (SAAH), FGF7, GLUT4, and apolipoproteins 3 (APOL3), with an effect of time for APOL3 where its expression increased over time. There was a tendency for cows fed RPM to have decreased IL1ß mRNA expression. In conclusion, feeding RPM during transition period and early lactation is beneficial for uterine immune response and metabolism in early lactation as indicated by the favorable expressions of genes affecting the uterine immunometabolism during such a challenging period.


Methionine , Peripartum Period , Animals , Cattle , Diet/veterinary , Dietary Supplements , Female , Gene Expression , Lactation , Milk
7.
J Dairy Sci ; 103(12): 11386-11400, 2020 Dec.
Article En | MEDLINE | ID: mdl-33041036

Feeding rumen-protected Lys (RPL) may be used to increase lactation performance in dairy cows; however, the effect of feeding RPL during the prepartum period and subsequent effect on postpartum performance is not well explored. Therefore, this experiment was conducted to determine the effects of feeding RPL (AjiPro-L Generation 3, Ajinomoto Heartland Inc., Chicago, IL) prepartum, postpartum, or both on performance, health, and blood metabolites. Seventy-five multiparous Holstein cows, blocked by parity, previous 305-d mature-equivalent milk production, expected calving date, and body condition score during the far-off dry period were assigned to 1 of 2 dietary treatments: total mixed ration with or without RPL in a randomized, complete block design. A 2 × 2 factorial arrangement of treatments was used. Prepartum (-28 d to calving), animals were fed a diet (forage, 68% of dietary DM) with RPL [PRE-L; 0.54% RPL of dietary dry matter intake (DMI)] or without RPL (control; PRE-C). After calving, half of the cows from each prepartum treatment group were assigned to a diet (forage, 55.5% of dietary DM) with RPL (PRE-L POST-L; PRE-C POST-L; 0.40% RPL of dietary DMI) or without RPL (PRE-C POST-C; PRE-L POST-C) until d 28 postpartum. Cows were milked twice a day and milk samples were taken on 7 ± 1.3, 14 ± 1.4, and 28 ± 1.1 d relative to calving (DRC). Milk yield and DMI were recorded daily. Blood samples were taken for plasma AA analysis on -7 ± 0.5, 0 ± 0.5, 7 ± 0.9, and 14 ± 0.9 DRC. Cows in PRE-L had greater body weight at -2 and -1 wk before calving compared with those in PRE-C, though body weight change from wk -4 to -1 was not different. Body weight (717 ± 6 kg) was greater and DMI (18.1 ± 0.7 kg) tended to be greater for cows in PRE-L POST-L and PRE-L POST-C compared with those that were in PRE-C POST-L and PRE-C POST-C (707 ± 6 and 16.8 ± 0.7 kg, respectively). Energy-corrected milk (48.8 ± 1.9 kg/d), milk fat (1.9 ± 0.1 kg/d), milk true protein (1.4 ± 0.1 kg/d), milk casein (0.6 ± 0.04 kg/d), and milk lactose yields (2.1 ± 0.1 kg/d) were greater for cows in PRE-L POST-L and PRE-L POST-C compared with those that were in PRE-C POST-L and PRE-C POST-C (44.2 ± 1.9, 1.7 ± 0.1, 1.3 ± 0.1, 0.5 ± 0.04, 1.9 ± 0.1 kg/d, respectively). Plasma concentrations of Lys prepartum (69.8 ± 1.8 µM) increased for cows in PRE-L compared with those in PRE-C (62.5 ± 1.3 µM). In conclusion, RPL consumed prepartum tended to increase postpartum DMI and increased energy-corrected milk and milk component yields. This indicates that prepartum supply of intestinally available Lys is pertinent to postpartum performance. However, postpartum supply of intestinally available Lys had no effect on cows' performance.


Cattle/physiology , Lactation/drug effects , Lysine/administration & dosage , Milk/metabolism , Rumen/metabolism , Animals , Body Weight , Diet/veterinary , Female , Lysine/blood , Milk/chemistry , Parity , Postpartum Period/metabolism , Pregnancy , Prenatal Care
8.
Theriogenology ; 142: 338-347, 2020 Jan 15.
Article En | MEDLINE | ID: mdl-31711709

The objective of this study was to determine the effects of prepartum negative dietary cation-anion difference diet (DCAD) fed at two dietary Ca inclusion rates on postpartum uterine health and ovulation dynamics of multiparous Holstein cows (n = 76). Treatments began at 28 days before expected calving until parturition and were: CON: DCAD = +6 mEq/100g of DM with low dietary Ca (46.2 ± 15.2 g Ca/d; 0.4% DM; n = 26); ND: DCAD = -24 mEq/100g of DM with low dietary Ca (44.1 ±â€¯16.1 Ca/d; 0.4% DM; n = 24); NDCA: DCAD = -24 mEq/100g of DM with high dietary Ca (226.6 ±â€¯96.0 g Ca/d; 2.0% DM; n = 26). Vaginal discharge was evaluated through the fresh period via Metricheck (MC) for presence of purulent material. Polymorphonuclear (PMN) cell concentration in the uterus was evaluated at 15 and 30 days relative to calving (DRC). Endometrial tissue was harvested at 30 DRC for glandular morphology, presence of tight-junctions and adheren-junctions proteins, as well as assessment of superoxide dismutase (SOD) and glutathione peroxidase (GPX) activity. Blood plasma and serum samples were harvested in the prepartum and postpartum phase and were assessed for concentrations of lipopolysaccharide binding protein (LBP), serum amyloid A (SAA), and haptoglobin (HP). Ovarian dynamics were assessed through the fresh period until first timed artificial insemination (TAI). Cows fed CON had a lower MC score (P = 0.06) than the average of cows fed ND and cows fed NDCA. Cows fed ND had a higher MC score than cows fed NDCA. Cows fed NDCA had greater uterine gland epithelial height (P = 0.02) than cows fed ND. Cows fed NDCA also had a greater number of epithelial cells per gland (P = 0.05) than cows fed ND. Cows fed NDCA had greater intensity of occludin expression (P = 0.15) than cows fed ND. Cows fed NDCA had increased activity of SOD (P = 0.05) and decreased activity of GPX (P < 0.001) than cows fed ND. Cows fed ND had higher plasma HP concentrations than cows fed NDCA in the prepartum (P = 0.01) and post-partum (P = 0.03) periods. Cows fed ND and NDCA had lower (P = 0.01) postpartum plasma HP concentration than cows fed CON. In conclusion, cows fed NDCA had an improved uterine environment most likely due to alleviation of oxidative stress, an enhanced immune response to parturition and uterine discharge comparable to cows fed CON.


Acids/administration & dosage , Calcium, Dietary/administration & dosage , Endometritis/prevention & control , Fertility/drug effects , Maternal Nutritional Physiological Phenomena , Puerperal Disorders/prevention & control , Uterus/drug effects , Acids/pharmacology , Animal Feed/analysis , Animal Nutritional Physiological Phenomena/drug effects , Animals , Calcium, Dietary/pharmacology , Cattle , Cattle Diseases/prevention & control , Diet/veterinary , Endometritis/veterinary , Female , Fertility/physiology , Lactation/drug effects , Lactation/physiology , Maternal Nutritional Physiological Phenomena/drug effects , Milk , Postpartum Period/drug effects , Pregnancy , Puerperal Disorders/veterinary , Uterus/physiology
...